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Abstract
Physical therapy (physiotherapy), a complementary and alternative medicine therapy, has been widely applied in diagnosing and

treating various diseases and defects. Increasing evidence suggests that convenient and non-invasive far-infrared (FIR) rays, a

vital type of physiotherapy, improve the health of patients with cardiovascular disease, diabetes mellitus, and chronic kidney

disease. Nevertheless, the molecular mechanisms by which FIR functions remain elusive. Hence, the purpose of this study was to

review and summarize the results of previous investigations and to elaborate on the molecular mechanisms of FIR therapy in

various types of disease. In conclusion, FIR therapy may be closely related to the increased expression of endothelial nitric oxide

synthase as well as nitric oxide production and may modulate the profiles of some circulating miRNAs; thus, it may be a beneficial

complement to treatments for some chronic diseases that yields no adverse effects.
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Introduction

Infrared radiation is an invisible form of electromagnetic
energy, the wavelength of which is longer than that of vis-
ible light. Infrared radiation can be categorized into three
groups according to wavelength, namely near infrared
(NIR, 0.8–1.5 mm), middle infrared (MIR, 1.5–5.6 mm), and
far infrared (FIR, 5.6–1000 mm).1 Infrared radiation probably
enables multiple forms of energy to be transferred into sub-
cutaneous tissue (approximately 2–3 cm deep) without
stimulation or excessive heating.2 In one study, skin tem-
perature increased to 38–39�C after FIR treatment for
30 min to 1 h with 20 cm of spacing between ceramic
plates and the skin.3 Thus, FIR therapy may yield none of
the side effects of traditional thermal therapy, such as infec-
tion or burn injury, and has therefore been widely employed
to promote health.

FIR treatment methods can be divided into two cate-
gories according to clinical implementation in general. In
the first category, an FIR emitter composed of electrified
ceramic plates is placed 20 cm above a patient and provides
low energy to increase skin temperature steadily.3 In add-
ition, the FIR radiator is frequently used in experiments for
local (or point) treatment by maintaining the surface tem-
perature lower than 40�C. In the other more prevalent

category, FIR dry sauna therapy,4 light is employed to
create heat by using a sauna. Unlike traditional saunas,
which apply heat to warm the body by increasing the ambi-
ent air temperature, FIR saunas heat the body directly with-
out employing the air as a heat transfer medium.5 In a
previous study, sauna therapy was performed using an
FIR dry sauna device at 60�C for 15 min, followed by trad-
itional warm keeping for 30 min.6

Although previous studies have shown that FIR radi-
ation produces thermal and non-thermal effects, such as
increasing artery blood flow7 and peripheral blood circula-
tion,8 improving endothelial function,9 alleviating fatigue10

and pain,11 reducing blood pressure,12 and promoting capil-
lary dilatation,13 the precise mechanism has yet to be thor-
oughly understood. Therefore, the purposes of this study
were to review and summarize published data on FIR ther-
apy on different types of diseases (Table 1) and to delineate
the mechanisms of FIR therapy.

FIR therapy for cardiovascular disease
Cardiovascular disease

Cardiovascular disease (CVD), the leading cause of
deaths worldwide, refers to any disease affecting the
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cardiovascular system including cerebral and renal vascu-
lar diseases, cardiac disease, and peripheral arterial dis-
ease.14 The most common factors that induce CVD are
atherosclerosis and hypertension. Moreover, even in
healthy asymptomatic elderly people, various alterations
in physiology and morphology affect cardiovascular func-
tion and thus result in an increased risk of CVD;15 thus,
determining treatments for curing the disease is imperative.

Effects of FIR on CVD

Evidence has indicated that FIR rays exert protective effects
on CVD. Several weeks of sauna therapy markedly
enhanced flow-mediated endothelium-dependent dilation
of the brachial artery (P< 0.001),16–18 which was associated
with an increase in cardiopulmonary exercise tolerance.17,18

Because endothelial dysfunction is typically observed in
patients with hypertension,19 hypercholesterolemia,20 dia-
betes mellitus (DM),21 and obesity and patients who
smoke,22 sauna treatments probably play a therapeutic
role for patients with coronary risk factors, suggesting that
sauna treatments improve vascular endothelial function.

Compelling evidence has indicated that vascular endo-
thelial function is closely associated with endothelial nitric
oxide synthase (eNOS), which catalyzes the amino acid
L-arginine into L-citrulline and nitric oxide (NO) in the
endothelium. NO is a crucial vasodilator substance, which
prevents the progression of atherosclerosis by dilating
blood vessels and inhibiting some arterial disorders such
as platelet aggregation and the migration and proliferation
of smooth muscle cells.23 Ikeda et al. reported that one
month of FIR sauna therapy significantly upregulated

eNOS mRNA and protein expression (0.73� 0.04 vs.
1.02� 0.02, P< 0.01; 3250� 70 vs. 4090� 60, P< 0.01,
respectively) as well as serum NO production
(3.98� 0.43 mmol/L vs. 4.66� 0.5 mmol/L, P< 0.05) in car-
diomyopathic hamsters with chronic heart failure (CHF).24

In addition to enhancing eNOS expression, FIR increases
NO production probably by promoting the Ca2þ/calmodu-
lin-dependent protein kinase II (CaMKII)-mediated phos-
phorylation of eNOS at serine 1179 to increase eNOS
activity.25 Although FIR radiation can notably increase the
temperature of culture media and intracellular Ca2þ levels,
temperature-sensitive calcium channels and transient
receptor potential vanilloid may not contribute to the path-
way of the CaMKII-mediated phosphorylation of eNOS.25

Thus, we propose that the non-thermal effects of FIR radi-
ation, as has been recently shown for other types of non-
ionizing radiation,26 may be involved in this pathway by
activating voltage-gated calcium channels.27 Nevertheless,
all of these mechanisms suggested that upregulating NO
production by increasing eNOS expression level and its
phosphorylation level is a critical manner in which FIR ther-
apy improves endothelial function in patients with CHF.

Notably, urinary 8-epi-prostaglandin F2a (a product of
lipid peroxidation) levels were markedly lower in partici-
pants with coronary risk factors who received an FIR dry
sauna for two weeks compared with those of controls.28

Because 8-epi-prostaglandin F2a is a reliable marker of oxi-
dative stress in vivo, and oxidative stress is involved in the
development of atherosclerosis and heart failure,29 the
results suggested that repeated FIR ray therapy can
reduce oxidative stress,30 preventing the progression of

Table 1 Studies relevant to far-infrared rays

Disease Subjects Exposure type Duration Primary parameters Reference

CVD Human FIR sauna 2 weeks FMD 16

CVD Human FIR sauna 2 weeks 8-epi-prostaglandin F2aSystolic blood

pressure

28

CHF Hamster FIR sauna 4 weeks eNOS mRNA and protein NO

production

24

CHF Human FIR sauna 3 weeks FMD 6MWD 17

DM Human Local FIR stimulation 2 weeks 8-epi-prostaglandin F2a 43

DM Human Local FIR stimulation 4 weeks Cortisol Blood glucose Insulin 47

DM Mouse FIR sauna 5 weeks Blood flow EPC mobilization and dif-

ferentiation Oxidative stress

48

ESRD Human Local FIR stimulation 1 years Qa AVF unassisted patency Incidence

of AVF malfunction

55

CKD Human Local FIR stimulation 1 years AVF PTA-unassisted patency AVG PTA-

unassisted patency

59

CKD Human Local FIR stimulation 1 years Rate of AVF maturation AVF unassisted

patency

61

Hindlimb ischemia Mouse FIR sauna 5 weeks Blood flow Capillary density eNOS

expression NO production

7

PAD Human FIR sauna 10 weeks Pain score Blood flow 6MWD 4

Testis ischemia Rat Local FIR stimulation 30 min HO-1 protein Apoptosis of testis tissues 68

FIR: far-infrared; CVD: cardiovascular disease; FMD: flow-mediated endothelium-dependent dilation; CHF: chronic heart failure; eNOS: endothelial nitric oxide syn-

thase; NO: nitric oxide; 6MWD, 6-min walk distance; DM: diabetes mellitus; EPC: endothelial progenitor cell; ESRD: end-stage renal disease; Qa: access flow; AVF:

arteriovenous fistula; CKD: chronic kidney disease; AVG: arteriovenous graft; PTA: percutaneous transluminal angioplasties; PAD: peripheral arterial disease; HO-1:

heme oxygenase-1.
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atherosclerosis. Because oxidative stress reduces the bio-
availability of NO (free radicals can inactivate NO),31 a
reduction in oxidative stress probably indicates an
improvement in endothelial function through an increase
in NO production.

The enhancement in eNOS expression caused by FIR
stimulation may be related with miRNA. Shear stress is
crucial to increasing eNOS activity by stimulating its
expression.32 All of the aforementioned studies have sug-
gested that FIR therapy accelerates peripheral blood flow,
leading to an increase in shear stress, followed by increases
in eNOS activity and NO production and upregulation of
eNOS expression. Consequently, vascular endothelial func-
tion and exercise tolerance are improved.

A previous study reported that miRNAs are essential for
various CVDs because depletion in the miRNA-processing
enzyme engenders defects in cardiac development and
angiogenesis.33 Several studies have revealed that shear
stress or FIR can regulate the expression of miRNAs in
endothelial cells. For instance, miRNA-21 induced by
shear stress in endothelial cells can modulate endothelial
cell apoptosis and eNOS activity as well as NO produc-
tion.34 In one study, miRNA-663 played vital roles in
shear stress-induced inflammatory responses by derepress-
ing inflammatory response genes.35 A recent study deter-
mined that FIR treatment enhanced the expression of
miRNA-31 and miRNA-720, thereby increasing coronary
artery disease endothelial progenitor cell (EPC) expression
and rescuing the angiogenic and vasculogenic abilities of
EPCs both in vitro and in vivo.36 Circulating miRNAs (e.g.
miRNA-1, miRNA-17, miRNA-92a, miRNA-126, miRNA-
133, and miRNA-145) in the blood cells or serum/plasma
have been identified as potential biomarkers of CVD37 and
can be used for diagnosing and determining the prognosis
of acute myocardial infarction.38 In summary, we suspect
that FIR improves the endothelial function of patients with
CVD by increasing eNOS and NO levels by promoting
shear stress and altering the expression profiles of some
circulating miRNAs.

FIR therapy for DM
Diabetes mellitus

DM is a group of metabolic diseases caused either by a
deficiency in insulin production (type 1) or by development
of insulin resistance (type 2).39 Most diabetes cases can be
grouped into two broad etiopathogenetic categories: type 1
DM, caused by failure of the pancreas to secrete insulin; and
type 2 DM, caused by the inability of the body to respond
properly (e.g. resistance) to insulin action or insulin secre-
tory response.40 A person with DM (type 1 or 2) has high
concentrations of blood sugar, which undermine the blood
vessels, nerves, kidneys, and other systems of the body.40

Effects of FIR on DM

Masuda et al. demonstrated that repeated dry sauna
therapy by using FIR reduced urinary levels of
8-epi-prostaglandin F2a (an oxidative stress marker)28 and
that DM was associated with increased oxidative stress,41

which has a marked insulin-resistance effect.42 Kawaura
et al. investigated the oxidative-stress-related modulatory
effect of FIR local stimulation in bedridden patients with
type 2 DM.43 Two weeks of local FIR therapy administered
to the legs significantly reduced plasma 8-epi-prostaglan-
din F2a levels in type 2 DM patients (P< 0.05).43 A reduction
in eNOS bioactivity was involved in the pathogenesis of
oxidative stress in skeletal muscle insulin resistance.44

Furthermore, eNOS played a critical role in regulating insu-
lin sensitivity.45 Overall, FIR therapy may improve skeletal
muscle insulin resistance through eNOS expression
following a decrease in oxidative stress in patients with
type 2 DM.

Patients with DM sustain stress because of daily dietary
restrictions, leading to an excessive release of cortisol, caus-
ing diverse negative reactions such as hypertension.46

Consequently, DM is exacerbated. Ryotokuji et al. indicated
that four weeks of FIR radiation administered to the feet of
type 2 DM patients significantly reduced cortisol levels and
blood glucose levels.47 Therefore, assuming that FIR ther-
apy normalizes blood glucose levels by reducing serum
levels of cortisol (adrenal glucocorticoid hormones) and
thereby improves the ability to respond to insulin action
in patients with type 2 DM is reasonable.

Huang et al. observed that FIR therapy increased blood
flow recovery by 48%, increased bone marrow-derived EPC
differentiated into endothelial cells (11.2� 1.1/HPF vs.
18.8� 2.0/HPF, P< 0.01), and reduced oxidative stress
(P< 0.05) in streptozotocine-induced diabetic mice.48

Moreover, the benefits of local FIR radiation were abolished
after injection with L-NAME (an eNOS inhibitor).48 Because
neovascularization requires bone-marrow-derived circulat-
ing EPCs for vasculogenesis,49 high glucose-impaired capa-
cities of EPCs probably involve NO-related mechanisms.50

In addition, NO can modify the mobilization and differen-
tiation of EPCs,51 and an increase in free radicals in tissue
ischemia may downregulate NO bioavailability by directly
inactivating NO.31 Thus, FIR treatment may be related to a
NO-related pathway. Moreover, FIR therapy is suggested to
have benefits of promoting blood flow recovery and form-
ing new vessels by enhancing the EPC homing process by
reducing oxidative stress in the ischemic hindlimbs of dia-
betic mice.

FIR therapy for chronic kidney disease
Chronic kidney disease

Chronic kidney disease (CKD) is a progressive renal dys-
function experienced during several months or years52 and
can be classified into five stages (stages 1 to 5) according to
severity. End-stage renal disease (ESRD) is stage 5 CKD and
is a severe illness with a poor prognosis for which treatment
with dialysis or transplantation may be required.52 For
patients with ESRD who receive hemodialysis (HD) treat-
ment, native arteriovenous fistulas (AVFs) and prosthetic
arteriovenous grafts (AVGs)53 are typically used to obtain
the well-functioning vascular access that is critical to suffi-
cient dialysis.54
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Effects of FIR on CKD

Lin et al. showed that long-term FIR exposure increased
access flow (Qa), reduced the incidence and relative inci-
dence of AVF malfunction, and improved the unassisted
patency of AVFs in HD patients.55 Because decreasing vas-
cular Qa is an effective index for estimating thrombosis-
related access dysfunctions,56 the improvement in the
patency of AVFs was likely associated with a higher value
of Qa. According to Kipshidze et al.,57 a non-ablative infra-
red laser (NIL) restrained neointimal hyperplasia and
reduced the proliferation of vascular smooth muscle cells
(VSMCs) after percutaneous transluminal coronary angio-
plasty in cholesterol-fed rabbits for 60 days. Because the
growth of VSMCs increases the risk of vascular access sten-
osis in HD patients,58 inhibiting neointimal hyperplasia
may be one mechanism through which FIR therapy
improves vascular restenosis progression in patients with
ESRD.

Furthermore, Lai et al. investigated the effect of FIR treat-
ment on HD access maintenance after percutaneous trans-
luminal angioplasties (PTAs) in AVG and AVF
populations.59 The data showed that a radiated group of
patients with AVGs exhibited significantly improved unas-
sisted patency at one year (16.3% vs. 2.1%, P< 0.05).59

However, in the AVF population, post-PTA FIR radiation
therapy non-significantly improved the unassisted patency
rate.59 The results of clinical trials of FIR radiation therapy
were inconsistent with those of Lin et al.,55 possibly because
most patients examined by Lin et al. received no PTA treat-
ment.55 Overall, because of the improvement in unassisted
patency, FIR radiation therapy may benefit PTA-treated
AVG and AVF patients who are high-functioning or have
not received repeated PTA.

The failure of an AVF to mature is a critical pathologic
reason for the malfunction of newly created AVFs in people
at advanced stages of CKD.60 Lin et al. reported that three
months of FIR treatment can enhance the rate of AVF mat-
uration significantly (90% vs. 76%, P< 0.05).61 In addition,
they demonstrated that FIR stimulation provided substan-
tial benefits of increasing Qa and the rates of AVF unas-
sisted patency and clinical maturation as well as lowering
AVF malfunction within one year compared with controls.61

These results were identical to those of their previ-
ous study.55 Endothelial dysfunction associated with AVF
stenosis may lead to AVF maturation failure in HD
patients.58 In summary, FIR benefitted HD patients by pro-
moting endothelial function in both animal3,7,24 and clinical
studies.

FIR therapy for ischemia
Ischemia

Ischemia that triggers the unavailability of oxygen and glu-
cose to tissues is generally ascribed to blood vessel prob-
lems, resultant damage, or tissue dysfunction. If not treated
immediately, ischemia may aggravate rapidly to tissue
necrosis and gangrene within several hours, potentially
leading to paralysis.62

Effects of FIR on ischemia

A previous study determined that FIR radiation provides a
strong antiinflammatory benefit to the vascular endothe-
lium by inducing heme oxygenase-1 (HO-1) expression.63

HO-1 is a rate-limiting enzyme in heme oxidization of bili-
verdin and carbon monoxide.64 Biliverdin can be further
catalyzed to a potent antioxidant bilirubin,65 whereas
carbon monoxide, similar to NO, exhibited effects of vaso-
dilation and modulating intracellular cGMP levels in one
study.66 Thus, FIR probably plays a crucial role in increasing
cGMP signaling. HO-1 was shown to prevent testis injury in
models of hypoxic preconditioning.67 Tu et al. investigated
the effect of FIR postconditioning on ischemia/reperfusion
(I/R) injury in rat testes.68 The results indicated that HO-1
protein in the testes was overexpressed in a group of rats
with 2 h-ischemia I/R injury treated with FIR ray therapy for
30 min compared with untreated and heat light groups.68 In
addition, administering an HO-1 inhibitor abolished the
effect of FIR treatment.68 Furthermore, FIR therapy drastic-
ally reduced apoptosis and alleviated injury of testis
tissue,68 suggesting that HO-1 is crucial in FIR postcondi-
tioning for protecting rat testis from I/R injury.

In a mouse model of an ischemic hindlimb, Akasaki et al.
reported that five weeks of FIR sauna therapy markedly
upregulated blood flow, capillary density, eNOS expres-
sion, and NO production compared with those of controls.7

However, administering L-NAME suppressed the effects
induced by FIR stimulation.7

FIR alleviated tissue ischemia in animal3,7,68 and clinical
studies.69 Tei et al. reported that long-term sauna therapy
reduced pain scores, increased blood flow, and promoted
angiogenesis,69 but was ineffective in eNOS-deficient mice.
In addition, exercise tolerance was upregulated.69

The induction of NO by eNOS is essential for regulating
angiogenesis,70 and this process can be elicited by vascular
endothelial growth factor.71–73 In summary, eNOS is a crit-
ical regulator for angiogenesis in repeated FIR sauna ther-
apy. In addition, both eNOS and exercise can increase the
mobilization of EPCs,51,69 which is vital to vasculogenesis.48

Thus, FIR may be a novel innovative therapy for treating
ischemic areas.

Successful revascularization of an ischemic region neces-
sitates new blood vessel growth, stabilization, and matur-
ation,74,75 which are critical for reducing cell death and
increasing the blood supply to damaged areas.76 Because of
the importance of pericytes in maintaining newly generated
microvessels during angiogenesis, pericyte deficiency leads
to endothelial cell apoptosis and destabilization of the micro-
vasculature.77 Thus, pericyte recruitment likely plays a key
role in vascular remodeling in cortical tissues after ischemic
stroke. Furthermore, a recent study reported that pericyte
relaxation increased blood flow in vivo.78 Because FIR rays
enhance blood flow and improve ischemic areas, although
the exact mechanism has not been elucidated, we speculate
that FIR rays positively affect pericytes after ischemia.

FIR therapy for other diseases

FIR therapy is effective in relieving pain in patients with
chronic pain,79 chronic fatigue syndrome,80 and
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fibromyalgia.81,82 FIR benefitted trained runners who suf-
fered from muscle damage83 and patients who experienced
persistent and progressively increasing phantom limb pain
after amputation.84 Furthermore, FIR stimulation alleviated
depression in patients with insomnia by increasing sero-
tonin and reducing malondialdehyde levels.85 However, a
case of pseudolymphoma occurring in a blue-green tattoo
was thought to be related to FIR light exposure and induced
sweating.86 These effects on living organisms exposed to
FIR rays are poorly understood; therefore, further study is
required.

Conclusion and perspectives

As a potential complementary therapy, FIR radiation had
both thermal and non-thermal effects. The thermal effect of
FIR therapy could increase blood flow and vasodilation by
heating the tissue (hyperthermia), similar to ordinary ther-
mal therapy composed of heat pads or hot water.87 In add-
ition, FIR treatment with low levels of delivered energy
(non-thermal effect) also had biological activities.88,89 A
study of patients receiving HD treatment had shown
decreases in stress and fatigue levels by FIR stimulation

Figure 1 Effects of far-infrared therapy. Far-infrared (FIR) rays enable multiple energy transfer as deep as 2–3 cm into subcutaneous tissue without irritating or

overheating the skin and then accelerate blood flow, leading to an increase in shear stress, followed by an increase in endothelial nitric oxide synthase activity and nitric

oxide production. Moreover, FIR or shear stress can regulate the expression of some circulating miRNAs in endothelial cells. Consequently, FIR therapy improves the

symptoms of chronic diseases (e.g. cardiovascular disease, diabetes mellitus, and chronic kidney disease). (A color version of this figure is available in the online

journal.)
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rather than thermal treatment (heat pads), which was prob-
ably attributed to the non-thermal effect.10 An explanation
of non-thermal effect of such low energy levels was that
nanoscopic water layers got disturbed by low irradiances,
leading to the change of cellular membrane structure, then
made the therapeutic effects.87

Since FIR therapy was frequently applied in the medical
field, numerous investigators have attempted to determine
the effects of these novel FIR rays on biological systems. FIR
radiation has multiple properties; thus, no direct interrela-
tionships among the properties could be identified. Possible
explanations include reduction in oxidative stress,
improvement in endothelial function, and inhibition of
neointimal hyperplasia. Regarding the effect of FIR treat-
ment on oxidative stress downregulation, Masuda et al.
showed that FIR therapy reduced oxidative stress in
patients with coronary risk factors.28 In addition, a decrease
in oxidative stress was observed in DM patients who
received FIR therapy.41,48 Regarding the effect on endothe-
lial function, an intervention group exposed to FIR rays
exhibited quicker amelioration of endothelial function
than did non-exposed controls in both CVD16 and CKD
populations.61 Regarding the third mechanism, Kipshidze
et al. demonstrated that NIL inhibited neointimal
hyperplasia.57

Furthermore, FIR rays have been applied in treating vari-
ous chronic diseases, such as hypertension, heart failure,
and vascular endothelial dysfunction, which are associated
with the depletion of tetrahydrobiopterin (BH4), a critical
cofactor for NO synthases.90,91 FIR therapy improves blood
flow in heated surface areas, causing an increase in vascular
shear stress and enhancement of the activity of GTP cyclo-
hydrolase I, which benefits BH4 synthesis.92,93 Thus, the
increased availability of BH4 may provide key insight into
the underlying mechanisms of sauna therapy. A recent
study demonstrated that capillaries control blood flow pri-
marily related to active pericyte relaxation.78 In addition,
pericyte death in rigor results in a permanent decrease in
blood flow in capillaries and damages neurons after
stroke.94–96 These mechanisms resemble FIR in improving
capillary dilation and blood flow and may reflect the pro-
motion of stroke recovery by FIR stimulation. In other
words, FIR therapy may alleviate stroke by inhibiting peri-
cyte death.

Except for the aforementioned mechanisms, the eNOS
and NO-increasing activity of FIR radiation treatment
may be recognized as a possible common background
(Figure 1).97 An increase in blood flow induced by FIR treat-
ment increases shear stress, which is a crucial determinant
of endothelial function and phenotype in atherosclerosis.
Furthermore, previous evidence has shown that shear
stress regulated the expression of miRNAs in endothelial
cells, and miRNAs influence endothelial biology by redu-
cing apoptosis and activating the NO pathway.34 Therefore,
FIR therapy is a potential therapeutic method for treating
CVD because it increases shear stress by regulating the
expression of miRNA. Overall, FIR ray treatment acceler-
ates peripheral blood flow, leading to an increase in shear
stress; consequently, the miRNA levels are elevated, fol-
lowed by an increase in eNOS and NO production.

The expression of NOS activity and miRNA has a circa-
dian rhythm and is closely associated with control mechan-
isms governing circadian expression. Ayers et al. reported
that NOS activity in the kidneys of mice exhibited a clear
circadian variation. The highest level occurred during the
dark period and the lowest level occurred during the light
period.98 In addition, NOS activation mediated the phase-
shifting effects of melatonin and 5-hydroxytryptamine on a
suprachiasmatic nuclei (SCN) circadian pacemaker in
rats.99 Moreover, as key regulators of the circadian timing
process, miRNA-219 and miRNA-132 levels in SCN exhib-
ited a salient rhythm, the highest level of which occurred
during the subjective day.100 In addition, several miRNAs
are involved in the modulation of the peripheral circadian
rhythm in mouse livers.101,102 Circadian rhythms have been
observed in the incidences of cerebrovascular diseases,
arterial diseases, and ischemic stroke.103,104 These results
suggested that the diurnal variation of NOS and miRNAs
may be related with that of the onset of some chronic dis-
eases. Therefore, FIR rays may have striking therapeutic
effects on medical treatments on the basis of a circadian
rhythm. However, further research considering objective
parameters and sufficient sample sizes must be conducted
in animal models and clinical applications to com-
pletely reveal the functional effect of circadian rhythms on
FIR rays.
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